
Abstract This commentary discusses new advances in the predictability of east African rains and 
highlights the potential for improved early warning systems (EWS), humanitarian relief efforts, and agricultural 
decision-making. Following an unprecedented sequence of five droughts, 23 million east Africans faced 
starvation in 2022, requiring >$2 billion in aid. Here, we update climate attribution studies showing that these 
droughts resulted from an interaction of climate change and La Niña. Then we describe, for the first time, how 
attribution-based insights can be combined with the latest dynamical models to predict droughts at 8-month 
lead-times. We then discuss behavioral and social barriers to forecast use, and review literature examining 
how EWS might (or might not) enhance agro-pastoral advisories and humanitarian interventions. Finally, 
in reference to the new World Meteorological Organization “Early Warning for All” Executive Action Plan, 
we conclude with a set of recommendations supporting actionable and authoritative climate services. Trust, 
urgency, and accuracy can help overcome barriers created by limited funding, uncertain tradeoffs, and inertia. 
Understanding how climate change is producing predictable climate extremes now, investing in African-led 
EWS, and building better links between EWS and agricultural development efforts can support long-term 
adaptation, reducing chronic needs for billions of dollars in reactive assistance. In Africa and beyond, climate 
change brings increasingly extreme sea surface temperature (SST) gradients. Using climate models, we can 
often see these extremes coming. Prediction, therefore, offers opportunities for proactive risk management and 
improved advisory services, if we can create effective societal linkages via cross-silo collaborations.

Plain Language Summary Eastern East Africa is extremely food insecure. Millions of farmers 
and pastoralists rely on two meager rainy seasons that arrive twice a year. In the 13 seasons since late 2016, 
the region experienced eight droughts and three exceptionally wet seasons. Seven droughts were linked to very 
strong Pacific sea surface temperature (SST) gradients, which arose through an interaction between climate 
change and La Niña. Climate change will bring more extreme Pacific and Indian Ocean SST gradients. Here, 
for the first time, we show that these gradients can be very well predicted by the current generation of climate 
models. We then discuss how such information might be used to inform risk management, agriculture, and 
livestock management practices. The IGAD Climate Predictions and Applications Center, Ethiopian and 
Kenyan meteorological agencies, and other groups are providing increasingly accurate climate information. This 
creates opportunities for more proactive and effective agricultural and pastoral advisory services. Trust, urgency 
and accuracy can lower uncertainty, reduce risk aversion, and empower poor households and cash-strapped 
institutions to act and innovate. Investing now in collaborative African climate systems, participatory advisory 
services and proactive risk management will help counter these threatening climate extremes.
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Key Points:
•  Climate change and La Niña are 

producing extreme Pacific sea surface 
temperature (SST) gradients, which 
can be predicted very far in advance

•  These Pacific SST forecasts provide 
robust opportunities for predicting 
well wet and dry outcomes in East 
Africa

•  Trust, urgency and accuracy can 
overcome barriers due to limited 
funding, uncertain tradeoffs, and 
inertia by improving advisory services
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1. Main
In this commentary, an interdisciplinary, international set of authors describes how climate attribution studies 
have led to new advances in the predictability of Eastern Horn of Africa (EHoA) rains, and then explores how 
these forecasts might better guide humanitarian relief and proactive agricultural decisions in the future, leading to 
increased resilience (Figure 1a). The team includes scientists from the IGAD Climate Prediction and Applications 
Center (ICPAC), the Famine Early Warning Systems Network (FEWS NET), the Ethiopian and Kenyan Meteor-
ological Departments, and scientists engaged in agricultural development, advisory services, and humanitarian 
relief efforts. Updating previously published climate attribution studies (Funk et al., 2008, 2014, 2018, 2019; 
Hoell & Funk, 2013a, 2013b; Williams & Funk, 2011), we show that sequential EHoA droughts are tied to strong 
east-west sea surface temperature (SST) gradients, which arise through an interaction of human-caused climate 
change (hereafter referred to simply as climate change) and La Niña (Figure 1). We then describe, for the first 
time in print, how the latest generation of climate models can predict these gradients and very warm west Pacific 
SSTs, and consequently EHoA droughts, at surprisingly long (8-month) lead-times (Figure 2). Finally, given that 
climate change is likely to increase the frequency of these events (Figure 3), we conclude with a discussion of the 
long-term implications of a potential increase in drought frequency. While many countries in East Africa have, in 
theory, policies supporting increased agricultural productivity and disaster risk management (Tadesse, 2016), in 
practice, millions of poor households remain vulnerable to climate shocks (Hansen et al., 2019). Could improved 
forecasts, EWS and advisory services be useful to agricultural and food security decision-makers?

The schema in Figure 1a lays out the logic of this Commentary. We first describe how climate change attribu-
tion leads to a tailored forecast process that produces more accurate long lead time forecasts. We then discuss 
how these forecasts might improve agricultural outcomes, humanitarian relief planning, and food security if 
decision-makers are able to translate predictions into effective practice. For many smallholder farmers, uncer-
tainty and risk aversion lead to low adoption rates for innovations. Accurate forecasts, communicated effectively 
via localized and trusted advisories, might decrease the uncertainty associated with trade-offs. For example, the 
fact that seasonal rains are not likely to be below-normal might reduce farmer's reasonable aversion to risk and 
innovation. Conversely, forecasts for regional drought, and increased cereal prices, might motivate farmers in 
climatically-secure areas or countries to increase production by investing more capital or labor. Such production 
increases might reduce regional price shocks. Hence, tailored forecasts, in conjunction with trusted and localized 
advisory systems, can motivate feasible cost-effective responses that address limited resources. Social and  indi-
vidual inertia potentially is reduced through localized, relevant information. We conclude by discussing how 
trust, urgency, and accuracy may help overcome barriers created by limited funding, uncertain tradeoffs, and 
inertia, and provide a set of recommendations related to effective EWS development and implementation in the 
context of climate change.

While focused on the EHoA, the techniques, opportunities, and barriers discussed here may be widely applicable 
to many areas exposed to risks associated with La Niñas. Human-induced warming in the west Pacific is inter-
acting with natural El Niño-Southern Oscillation (ENSO) variability, but tailored forecasting approaches can 
translate the influence of climate change into expanded opportunities for prediction.

2. Background—Volatile Climate, Humanitarian Crises, But Opportunities for 
Predictions
Since late 2016, the EHoA (Ethiopia, Kenya, and Somalia to the east and south of 38°E and 8°N) has experienced 
a high degree of climate volatility, with recurrent shocks due to frequent droughts and floods. During this period, 
nine seasons were dry, three were wet, and only two had normal rains (Figure 1b). Below-normal rains are inad-
equate to support productive crops and rangeland (Funk, Turner, et al., 2021).

Seven of the eight dry seasons in Figure 1b were anticipated with operational “tailored” forecasts (CHC/FEWS-
NET, 2022), based on climate-change-enhanced west Pacific SST, La Niña, and strong Pacific SST gradients 
(with one false alarm in March–April–May, or MAM, 2018 [CHC/FEWSNET, 2022]). Hits, that is, droughts that 
were accurately forecasted, included the back-to-back drought sequence in 2016/2017 (Voosen, 2020) and the 
five sequential below-normal seasons stretching from October–November–December (OND) 2020 through OND 
2022. These tailored forecasts benefitted from a two-step approach that (a) attributes droughts to extreme SST 
states, which arise through the interaction of natural variability and climate change (Figure 1), then (b) predicts 
these states using the latest state-of-the-science climate forecast ensembles (Figure 2).
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Figure 1.
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EHoA's position makes it uniquely exposed to climatic hazards driven by Indo-Pacific SSTs. When SST gradi-
ents increase rains above the eastern Indian Ocean and western Pacific Ocean, rains decrease over EHoA. This 
links EHoA precipitation to La Niña and Indian Ocean Dipole (IOD) events. During OND, these connections 
are well-established. There is less consensus for MAM. Some research suggests MAM rains are weakly linked 
to SSTs (Lyon, 2014; Lyon & DeWitt,  2012; Yang et  al.,  2014), and hence, largely unpredictable. However, 
many FEWS NET studies (Funk et al., 2008, 2014, 2018, 2019; Hoell and Funk, 2013a, 2013b; Williams & 
Funk, 2011) have attributed sequential OND/MAM dry seasons to Pacific SST gradients which arise through an 
interaction between La Niña and climate change.

These insights, combined with increasingly sophisticated climate forecast systems, supported five successful long-
lead forecasts in a row (CHC/FEWSNET, 2022). Eight months before the end of OND and MAM, strong Pacific 
SST gradients can often be accurately predicted. In May (ICPAC et al., 2022a) and November (ICPAC et al., 2022b) 
of 2022, these inputs helped motivate exceptional multi-agency drought alerts. Never before had such a broad 
coalition of EHoA early warning experts acted so successfully so far in advance of the next rainy season. Yet, by 
late 2022, the interaction of five sequential droughts, COVID-19, conflict, inflation, and pre-existing vulnerabilities 
placed 23 million people in food security crises (ICPAC et al., 2022b). In Somalia, despite massive humanitar-
ian responses reaching more than 7 million people, experts anticipated the outbreak of famine in 2023. Despite 
repeated, accurate predictions of drought (Figure 1b), the magnitude of this crisis continued to grow. An EWS may 
begin with climate information, but requires effective transformation into actions which can increase resilience 
(Figure 1a). This requires a shared understanding of how climate change and ENSO, together, offer opportunities 
for long lead predictions. Hence, we describe here the potential of these forecasts, and then discuss the opportunities 
and barriers associated with using such information within participatory agricultural advisory systems and human-
itarian EWS for incentivizing adaption and reducing food insecurity. With more research and dialog, the incorpora-
tion of such forecasts into operational forecast systems and policy-relevant decision-making processes may help our 
communities cope with increasing climate volatility, both in EHoA and in other areas linked to Indo-Pacific SSTs.

3. Data and Methods
This study relies on widely used Climate Hazard Center rainfall data sets (Funk et  al.,  2015a,  2015b) and 
NOAA Extended Reconstruction SST data (Huang et al., 2017). The terms dry, normal, and wet correspond to 
bottom, middle, and top-tercile rainy season outcomes. To reduce repetition, we also use “drought” to refer to 
below-normal rainy seasons. Seasonal SST forecasts are based on the North American Multi-Model Ensemble 
(NMME) (Becker et al., 2022). A 152-member, 25 model ensemble from the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) is used to examine projected human-induced SST increases, based on a moderate emis-
sions scenario (Shared Socioeconomic Pathway 2-4.5, SSP2-4.5) (Eyring et al., 2016). The attribution analyses, 
detailed in our first results section and presented in Figure 1, are updates of climate attribution studies focused 
on the 2016/2017 droughts (Funk et al., 2018, 2019). These results (Funk et al., 2018, 2019) informed accurate 
tailored forecasts (CHC/FEWSNET,  2022) (Figure  2), which we describe in our second results section. We 
then describe increasing risks associated with CMIP6 projections of stronger future Pacific SST gradients, new 
spatially-explicit forecast results, and biochar-based farming practices in a third results section (Figure 3). We 
then discuss how improved “climate-smart” decision-making might help regions cope with more frequent climate 
extremes. This discussion is guided by existing literature, ongoing policy-relevant activities in East Africa, the 
authors' experience, and the recently announced World Meteorological Organization (WMO) “Early Warning for 
All” project (WMO, 2022).

Figure 1. (a) Schematic diagram describing the links between climate attribution, prediction and improved interventions. (b) Barplot showing 2016–2023 regionally 
averaged Eastern Horn of Africa (EHoA) March–April–May (MAM) and October–November–December (OND) Standardized Precipitation Index values. West Pacific 
Gradient (WPG) and Western “V”-Gradient (WVG)-based drought forecast dates are noted for La Niña-related dry seasons, along with hit or false alarm outcomes. 
MAM 2023 result is a forecast, shown with 80% confidence intervals. (c) Standardized OND sea surface temperature (SST) composites for post-1996 dry EHoA OND 
seasons. Screened for significance at p = 0.1. Boxes denote the western and eastern Indian Ocean Dipole (IOD) regions, the equatorial west Pacific (110°E−140°E, 
15°S–15°N), and the Niño 3.4 region. (d) Same for MAM EHoA dry seasons. Boxes denote the Western V (blue) (110°E−140°E, 15°S–15°N, 160°E−160°W, 
20°N–35°N, 155°E−160°W, 15°S–30°S) and Niño 3.4 (yellow) regions. (e) SST index values for the observed MAM WVG and OND WPG. Anomalies calculated 
using a 1950–2020 baseline. The Pacific gradients associated with droughts (c, d) are becoming more frequent (e). Recent below-normal EHoA rainy seasons are 
marked with short vertical lines. The 2023 MAM WVG values are based on forecasts in Figure 2. The black circles denote the associated 80% confidence intervals. The 
associated question mark conveys our concerns for a sixth dry season, based on the 2023 WVG forecast in Figure 2. (f) Equatorial OND western Pacific, MAM Western 
V, and OND western Indian Ocean Coupled Model Intercomparison Project Phase 6 SSP245 SST anomalies for 1950–1979 and 2016–2022, along with observed SST 
anomalies for selected drought seasons. Anomalies based on a 1950–2020 baseline.
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Inclusion and Ethics: By design, this Commentary includes numerous authors from East Africa, as well as 
numerous collaborators in the US or Europe. The authors also represent several different communities of practice: 
climate, agricultural development, and food security. Effective dialog across these communities will be needed to 
guide effective adaptation. The collaboration supporting this article furthers that objective.

3.1. Results 1—Linking Recent Droughts to Extremely Warm Pacific SSTs and Climate Change

Scientists have long emphasized the societal dangers (Diaz,  2000; Glantz,  2001) associated with predictable 
(Becker et al., 2022; Barnston et al., 2019; L'Heureux et al., 2017; Tippett et al., 2017) El Niños and La Niñas and 

Figure 2. (a) Scatterplots of forecast and observed West Pacific Gradient (WPG) and Western V Gradient (WVG) values. Left panels show 1982–2022 October–
November–December (OND) forecasts made in May. Right panels show 1983–2023 March–April–May (MAM) forecasts made in September. OND 2022 and MAM 
2023 “observations” are assumed to equal the forecasts. Vertical bars indicate 80% confidence intervals. Blue, gray and red circles denote the Eastern Horn of Africa 
(EHoA) rainfall outcomes for each OND or MAM season. (b) Same but for regionally averaged sea surface temperature (SST) in equatorial western Pacific and Western 
V regions. Regions described in Figures 1c and 1d.
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Figure 3.
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that climate change is expected to increase the frequency of strong ENSO and IOD events (Cai et al., 2014a, 2014b,  
2015a, 2022). What is less appreciated is that the interaction of climate change and ENSO is creating opportuni-
ties for prediction—now. As climate change rapidly warms (Cheng et al., 2019) dynamically important regions in 
the Indian (Abram et al., 2008; Cai et al., 2021; Ihara et al., 2008) and Pacific Oceans (Cravatte et al., 2009; Roxy 
et al., 2019), exceptionally warm ocean conditions can produce potentially predictable droughts and wet seasons 
(Funk et al., 2018, 2019; Nicholson et al., 2022). For EHoA, this may be especially important for MAM, due to a 
strengthening connection to La Niña (Park et al., 2020). Figures 1c–1f updates attribution studies that identified 
how extremely warm west Pacific SST contributed to droughts in 2016/2017 (Funk et al., 2018, 2019). Compos-
ites of standardized contemporaneous SSTs during recent OND and MAM dry seasons (Figures 1c and 1d) can 
help identify predictor zones. OND rains are influenced by IOD (Behera et al., 2005; N. H. Saji et al., 1999; N. 
Saji & Yamagata, 2003), ENSO/Niño 3.4 SSTs (Indeje et al., 2000), and the SSTs in the equatorial west Pacific 
(Funk et al., 2018; Hoell and Funk, 2013a, 2013b). The MAM rains are linked to SSTs in the southern Indian 
Ocean (Wainwright et  al.,  2019), and the Pacific “Western V” and equatorial eastern Pacific regions (Funk 
et  al.,  2018,  2019). When the equatorial west Pacific and “Western V” regions are exceptionally warm, the 
area around Indonesia sees increases in rainfall, while the EHoA often experiences sequential dry conditions 
in OND and MAM (Funk et al., 2014, 2018, 2019; Hoell and Funk, 2013a, 2013b). While the OND telecon-
nections (Figure 1c) are well-appreciated, the strong MAM “teleconnections” implicit in Figure 1d are not as 
well-appreciated.

Gradient indices provide a convenient short-hand to describe Indian and Pacific Basin SST patterns. While gradi-
ents are commonly used in the Indian Ocean (N. H. Saji et al., 1999), there remains a tendency to only describe 
the Pacific with equatorial eastern Pacific SSTs (Trenberth, 1997), often summarized exclusively with the Niño 
3.4 region (5°N–5°S, 170°–120°W). Such a focus can miss important interactions with climate change and lead 
to missed opportunities for skillful predictions (Funk et al., 2014, 2018).

We define two gradients useful for such predictions. For OND, we describe the Pacific via the “West Pacific 
Gradient” (WPG) (Hoell & Funk, 2013a): the difference between standardized equatorial western and eastern 
Pacific SSTs (Pacific boxes in Figure 1c). For MAM, we use a similar “Western V Gradient” (WVG), based 
on the difference between Niño 3.4 and Western V temperatures (boxes in Figure 1d). During MAM, there are 
important extratropical interactions with the northern and southern hemisphere subtropical westerly jets over the 
Pacific Ocean, which link warm extra-tropical northern and southern Pacific SST to La Niña-like climate impacts 
(Funk et al., 2018, 2019).

Following the 1997/1998 El Niño, the western Pacific warmed substantially, and WPG and WVG values 
decreased dramatically (Figure 1e). This set the stage for numerous, often sequential, EHoA dry seasons (noted 
with short vertical lines). This trend toward more frequent strong gradient events has been attributed to a combi-
nation of natural ENSO variability and human-induced warming in the western Pacific (Funk et al., 2018, 2019; 
Seager et al., 2019, 2022). Strong upward SST trends in the equatorial west Pacific (Hoell & Funk, 2013a), the 
western North Pacific (Funk et al., 2018), and the “Western V” region (Funk et al., 2019) have been formally 
linked to human-induced warming (Funk et al., 2018, 2019). Warming in the already very warm west Pacific has 
enhanced observed La Niñas (Funk et al., 2018; Hoell & Funk, 2013a) in ways similar to climate change projec-
tions (Cai et al., 2015b, 2018). These exceptional Pacific gradient events have arisen alongside an exceptional 
number of 1998–2022 La Niña events—13 events in 25 years since 1998. Historically, La Niña events occur 
every 3-to-5 years (Diaz, 2000; Glantz, 2001). Hence, very frequent La Niñas, a lack of a warming trend in the 
eastern Pacific (Seager et al., 2019, 2022), and rapid warming in the west Pacific have created a large increase in 
Pacific SST gradients (Figure 1e), setting the stage for sequential droughts, especially during multi-year La Niñas 

Figure 3. (a) Time-series showing the median frequency of extreme October–November–December (OND) West Pacific Gradient (WPG) and March–April–May 
(MAM) WVG events, based on standardized time-series from the Coupled Model Intercomparison Project Phase 6 (CMIP6) SSP245 climate change ensemble, along 
with 95% confidence intervals. The WPG and WVG are calculated using SSTs from the Pacific boxes in Figures 1a and 1b, respectively. Extreme negative OND 
WPG and MAM WVG events are associated with values less than −1Z. Change in extreme event frequencies (# of events per 100 years) were calculated by taking the 
frequency differences between 2020–2030 and 1920–1979, and are reported in the inset table for each model with at least three simulations. The 20th, 50th and 80th 
percentile values of the per-model changes are shown in the last three columns. Time series were standardized using a 1950–2020 baseline. Human-induced warming 
in the western Pacific results in strong inter-model agreement on more frequent WPG and WVG events, in line with the observed gradient values shown in Figure 1c. 
(b) Experimental IGAD Climate Prediction and Applications Center forecasts for MAM 2023, based on localized logistic regressions and WVG forecasts. (c) Test plot 
results in eastern Kenya from MAM 2022. Upper-left and right panels show adjacent control and test plots. Bottom panel shows field preparation using Zai pits and 
biochar.
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(Anderson et al., 2022). However, wet EHoA rainy seasons, associated with exceptionally warm western Indian 
Ocean and eastern Pacific conditions, are also expected (Abram et al., 2008; Cai et al., 2014a, 2014b, 2015a, 2021,  
2022; Cheng et al., 2019; Ihara et al., 2008). Modes of intraseasonal variability, such as the Madden–Julian oscil-
lation, will also continue to produce impactful rainfall extremes, but the time scales these operate on make these 
anomalies hard to predict at long lead times.

We briefly assess the role of climate change in recent extremely warm SST hot spots (Figure 1f). The extremity of 
SST hot spots during recent extreme EHoA rainfall seasons is clear when compared to the past ∼70 years, while 
climate model SST simulations highlight the very likely role of climate change. During the droughts in OND 
2016/2020/2021 and MAM 2017/2021/2022, and the flooding in OND 2019 (Nicholson et al., 2022), either the 
western Pacific or the western Indian Ocean was exceptionally warm. In Figure 1f, the observed SST anomalies 
for these seasons, represented as vertical black lines, are compared with CMIP6 ensemble PDFs for 1950–1979 
and 2016–2022. The observed hot spots were +0.5–1°C above the 1950–2021 baseline. In a cooler world with 
less climate change (1950–1979), climate models indicate that the observed anomalies during these seasons were 
virtually impossible in such a world without climate change (Figure 1f). The large offset between modeled SST 
in the recent period and historically much cooler conditions reflects a strong climate change signature in these 
areas. Diagnostic studies link EHoA rainfall extremes to these very warm SSTs (Funk et al., 2018, 2019; Hoell 
and Funk, 2013a, 2013b; Nicholson et al., 2022). Climate change helped produce these extreme WPG, WVG, and 
IOD values, and associated EHoA rainfall extremes. Can these warm ocean conditions be predicted well, offering 
opportunities for improved decision-making?

3.2. Results 2. The Latest Generation of Climate Models Can Predict These Extreme Ocean States Well 
at Eight-Month Lead Times

Figure 2 presents exciting new examples of how climate change is interacting with natural variability to produce 
opportunities for long lead prediction. Each scatterplot shows NMME 8-month lead forecasts and actual outcomes: 
OND forecasts (left panels) were made in May, while MAM forecasts (right panels) were made in September. 
The first row presents the WPG and WVG indices, the western region component of the WPG and WVG indi-
ces. The second row displays equatorial west Pacific and Western V SSTs. Since mid-2020, such scatter plots 
have been used operationally (CHC/FEWSNET, 2022) to inform FEWS NET's Food Security Outlook process 
(Magadzire et al., 2017). These plots convey information about the predictability (high R 2) of the SSTs, as well 
as the potential association between extreme SST states and observed EHoA dry and wet rainy season outcomes 
(circle color).

At long leads, the WPG and WVG are predicted well (Figure 2a), with R 2 values of greater than 70%. The uncer-
tainty surrounding these forecasts are shown with 80% confidence intervals. These 80% confidence intervals can 
be used to assess the probability of being within a strong gradient season. In May, the models robustly anticipated 
strong negative WPG values associated with eight OND La Niña events. When such forecasts were made, there 
were below-normal EHoA seasons seven times out of eight. These dry seasons are shown with orange circles 
in the left of 2A. When forecast MAM WVG values have been less than −0.4Z, as was anticipated in Septem-
ber 2023, dry seasons occurred nine times out of thirteen (orange circles, right side Figure 2a). In late 2016, 
2020, and 2021, WVG forecasts helped anticipate dry outcomes the following MAM (CHC/FEWSNET, 2022; 
Voosen, 2020). Used in concert, WPG/WVG forecasts can potentially anticipate sequential droughts (Figure 1b).

Extreme West Pacific SST predictions, alone, are also useful drought indicators. Forecasts of exceptionally 
warm west Pacific SST clearly indicate strong tendencies for dry EHoA outcomes (Figure 2b), and diagnos-
tic studies have explained how these warm conditions modify winds in ways that reduce EHoA rains (Funk 
et al., 2018, 2019). This information builds on the information contained in more traditional predictors, such as 
equatorial eastern Pacific (Niño 3.4) SST forecasts. Knowing, with a high degree of certainty at long leads, that 
the western Pacific will be extremely warm allows us to bracket future drought events with higher confidence. 
These extreme SSTs are associated with climate change (Figure 1f).

3.3. Results 3. Climate Change Simulations Anticipate More 2020–2050 Strong Gradient La Niñas

Should we anticipate more WPG and WVG events in the future? To address this question, we examine the 
1920–2050 OND and MAM Pacific SST gradients, derived from 152 CMIP6 SSP2-4.5 SST simulations (Eyring 
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et al., 2016). For each year, for all of the simulations, we count the number of strong gradient events (WPG or 
WVG values less than −1Z) and translate those counts into a summary time-series (Figure 3a). Due to warming 
in the west Pacific, all of the models indicate substantial (>30%) event frequency increases between 2020–2030 
and 1920–1979. There is very consistent agreement on these changes across all the models (inset in Figure 3a). 
The simulations (Figure 3a), like the observations (Figure 1e), suggest a strong tendency toward more frequent 
strong gradient events, such that in the 2020s, we expect strong gradient La Niña-like conditions about 50% of 
the time. This tendency is related to a strong anthropogenic ENSO-residual trend mode (Funk & Hoell, 2015) that 
is closely related to the west Pacific warming, and will almost certainly increase over the next several decades 
(Figure 3a) as the west Pacific continues to warm. This creates both an opportunity and a need for improved 
forecast information.

3.4. Results 4. Exploring Spatially-Explicit WVG-BASED MAM Forecasts

If WPG/WVG events do become even more frequent, then enhanced forecast systems will be a critical tool for 
managing risk. One challenge associated with improving forecasts is the difficulty in linking research-based 
attribution studies (Anderson et al., 2022; Funk et al., 2018, 2019) with the operational “consolidated” forecast 
system used by groups such as ICPAC (https://www.icpac.net/seasonal-forecast/). These forecasts use spatially 
explicit maps and are presented at seasonal Climate Outlook Fora in East Africa. The OND and MAM seasons 
differ in that MAM rains are not predicted well by climate models (Shukla et al., 2016), because these rains are 
less spatially homogeneous (Nicholson, 2017) and can have non-linear relationships to SSTs, with more coherent 
links during droughts (e.g., Figure 1d). ICPAC scientists, however, are now exploring the use of logistic regres-
sion, in conjunction with WVG forecasts, to produce experimental MAM forecast maps at long-leads (Figure 3b), 
and such predictions are being used to support long-lead alerts (ICPAC et al., 2022b). Preliminary results from 
such approaches appear promising. Unlike Figure 3b, the scatter plot-based forecasts shown in Figure 2 lack 
the spatial dimension required to fit into ICPAC's map-based forecast streams. If gradient events become more 
frequent (Figure 3a), these novel forecasting techniques may help capture the predictability inherent in extremely 
warm SST (Figure 2a).

3.5. Discussion 1. Increased Trust, Urgency and Accuracy Can Help Overcome Barriers Associated With 
Limited Funding, Uncertain Tradeoffs, and Inertia by Supporting Improved Advisory Services

Improving food security outcomes in Africa is challenging, given that costly and momentous decisions must 
be made in a setting of uncertain tradeoffs (Lentz & Maxwell,  2022; D. G. Maxwell,  2016; D. Maxwell & 
Hailey, 2020; Sarkar et al., 2021) Most east Africans are risk-averse (Hansen et al., 2019) small-scale farmers 
with little mechanization and often nutrient-depleted soils (Giller et al., 2021). Uptake of innovative farming 
practices, crop insurance, and advisory services is limited (Hansen et al., 2019) and food insecurity is increasing 
(Funk & Shukla, 2020; ICPAC et al., 2022c). While acting earlier can save money, lives and livelihoods (Venton 
et al., 2012), decision making under uncertainty is difficult (Dosi et al., 2020; Luan et al., 2019). However, devel-
oping a shared appreciation of the urgency associated with climate change impacts (Figure 3a) and the accuracy 
of climate forecasts (Figure 2) can open the door for forecast utilization. But, achieving that goal requires the 
development of trusted advisory services linking stakeholders with climate forecast services.

Building trust is challenging. Despite some encouraging signs, there remain inconsistent findings in research 
examining associations between farmers' perceptions of climate variability and the likelihood of them using 
weather and climate information services (Diouf et al., 2019; Djido et al., 2021; Owusu Danquah et al., 2020). 
Decisions involve tradeoffs. Forecasts provide information on the probability of an adverse event, but they are 
silent on the risk of moving from the status quo. Yet, moving from the status quo also involves risk: adopting a 
new practice, crop, technology, or livelihood mix that may increase short-term resilience but prove to be maladap-
tive, resulting in negative impacts on crop yields, ecological health, or socioeconomic systems in the long run. For 
example, switching from a water-demanding crop like maize to drought-tolerant cassava often involves a tradeoff 
between lower risk and lower returns. Better predictions do not always translate into better decisions, as individuals 
tend to favor the known over the unknown, including known risks over unknown risks (Ellsberg, 1961). The 
risk-perception literature finds that individuals systematically overestimate the size of risks that are small, unfa-
miliar, involuntary, and uncertain, and contrastingly underestimate the size of risks that are larger, more certain, 
more familiar, or, over which they have some control (Cullen et al., 2018; Fischhoff et al., 1978; Slovic, 1987). 

https://www.icpac.net/seasonal-forecast/
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As the risks associated with predictable extreme SST gradients grow more urgent, trusted EWS advisories may 
be a cost-effective means of reducing poverty (Global Commission on Adaptation, 2019).

Increased farmer innovation, combined with public investment in large-scale insurance schemes and rural infra-
structure, can help manage climate risk. Unfortunately, the availability and influence of agricultural advisories 
remains very low in Africa (Hansen et al., 2019). Furthermore, unless co-developed, such advisories may not 
respond to the local needs of farmers (Born et al., 2021). It is important, however, to acknowledge examples of 
effective services. Table 1 provides some good examples of co-developed participatory agricultural advisory 
systems in Ghana, Rwanda (Ingabire, 2021), and Senegal (Chiputwa et al., 2020, 2022). In some non-African La 
Niña-impacted countries like Colombia, agro-advisories have helped maize farmers (Jimenez et al., 2019) and 
rice farmers (CCAFS, 2014; Delerce et al., 2016) increase profits. Modest expenditures on improved advisories 
can improve yields by 30% or more.

In Ethiopia, multi-agency collaborators have developed the Ethiopian Digital AgroClimate Advisory Platform 
(Seid et  al.,  2020) (EDACaP, advisory.ethioagroclimate.net). EDACaP uses climate and weather forecasts in 
conjunction with soil and crop data to develop local language advisories that are distributed to development 
agents and farmers via text messages and radio.

In Kenya, collaboration between the Kenya Meteorological Department, PlantVillage, Shamba Shape Up, and 
the Climate Hazards Center is providing text and television-based advisories to more than 9 million Kenyans. 
These advisories incorporate high-resolution rainfall observations (Funk 2015b), weather forecasts (Harrison 
et al., 2022), longer sub-seasonal weather predictions and WPG/WVG-based climate outlooks (Figure 2).

Trusted advisories can motivate innovations that help manage climate shocks. For example, PlantVillage is pilot-
ing innovative strategies that promote drought resilience via labor-intensive cultivation practices that involve the 
digging of moisture retaining “Zai” pits and the introduction of biochar. Zai pits can hold up to nine seeds of 
maize and can be filled with organic manure, biochar, or dry plant biomass. Derived from local organic waste, 
biochar attracts and maintains nutrients and water in the soil. Despite the dry MAM 2022 rains, a pilot project 
based in Kilifi county in eastern Kenya (Figure  3c) demonstrated the potential benefits. While control plots 
exhibited very low maize yields (<one ton per hectare), harvests in the test plots ranged from three-to-four tons 
per hectare. While more research and evaluation are required, spatially-explicit WVG-based forecasts (Figure 3b) 
hold the promise of supporting increased resilience, even in the face of severe droughts, as suggested by the pilot 
from Kilifi (Figure 3c).

These advisory services are not costless, but are relatively inexpensive when compared to post-impact, 
response-based alternatives such as humanitarian assistance and/or funding safety-net programs. In Kenya, the 
cost of getting a single SMS-advisory into the hands of a farmer is $0.006, and a farmer might typically receive 
15 advisories per season. To reach 6–8  million farmers per week on TV is approximately $3,000. Reaching 
50 million farmers each year via SMS might cost $4.5 million dollars. Localizing climate information, however, 
to agro-ecological and social contexts will require a considerable increase in resources.

From a policy perspective, the potential costs of EWS-empowered advisory systems might be compared to the 
>$2 billion USD in humanitarian relief being provided in 2022 to Ethiopia, Kenya, and Somalia. Investments 
in advisory systems might save millions of dollars a year in east Africa alone, if they reduced the need for very 
expensive emergency relief while supporting resilience and autonomy.

Pilot studies (Table 1) suggest that ∼30% increases in yields are plausible. In terms of historical variations, a 30% 
increase is a substantial increase. For example, in Kenya, poor MAM rains typically appear in association with 
a ∼15% reduction in national maize yields. A 30% increase in national maize production (∼1 MT), represents 
a large sum of money, when valued at 2022 wholesale Kenyan maize prices (∼US $320 million). In addition to 
increased economic outcomes, increased crop production can reduce price volatility.

3.6. Discussion 2. Can Long-Lead Forecasts Be Used to Improve Decision-Making and Increase 
Resilience?

As sequential droughts become more common during La Niña events, responding to the first drought, which 
consistently arises in OND, may be a low-regret intervention, especially since MAM dry seasons often follow. 
Social protection via safety nets and insurance programs can support more effective resilience building at scale 

http://advisory.ethioagroclimate.net
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by integrating early action and preparedness (Costella et  al.,  2017). Guaranteed funding before a shock can 
enhance the scalability, timeliness, predictability, and adequacy of social protection benefits. In 1998, 2010, 
2016, 2020, 2021, and 2022, June forecasts of extremely warm west Pacific SSTs correctly indicated OND 
droughts (Figure 2b) that led to widespread livestock loss and plummeting livestock prices. Index-Based Live-
stock Insurance is another promising intervention strategy that targets pastoralists and agro-pastoralists who face 
some of the most-extreme risks from drought (Syll, 2021). Climate forecasts (Figure 3b) might be combined with 
Predictive Livestock Early Warning Systems (Matere et al., 2020) to improve predictions of forage conditions. 
More extreme precipitation may be recharging deep aquifers (Adloff et al., 2022). Accessing this water via bore-
holes might help buffer rainfall deficits.

There are opportunities to better link EWS with adaptation research. For example, the Evidence for Resil-
ient Agriculture (ERA, https://era.ccafs.cgiar.org/) project provides data and tools that pinpoint what agricul-
tural technologies work where. Resources like the Adaptation Atlas (http://adaptationatlas.cgiar.org/riskmap) 
allow decision-makers to examine climate change-related risks alongside potential solutions. Agroforestry, 
micro-credit, insurance, digital advisories, improved breeds, crops, forages and diets, fertilizer, intercropping, 
irrigation, mulch, trees, planting decisions, stress-adapted varietals, and water harvesting—the list of potential 
adaptations is long. African-led efforts that link EWS to appropriate local solutions can help us anticipate and 
adapt to more extreme climate.

4. Conclusion: Recommendations vis-à-vis Calls for Improved Early Warning 
Systems
In November 2022, at COP27, the UN Secretary-General unveiled the “Early Warnings for All Plan” (WMO, 2022) 
which provides $3.1 billion USD to support EWS in developing countries. The plan supports four disaster-risk 
reduction (Syll, 2021) pillars: (a) Disaster-risk knowledge, (b) Observations and Forecasting, (c) Preparedness 
and response, and (d) Dissemination and communication. EWS “are a proven, effective, and feasible climate 
adaptation measure, that save lives, and provide a tenfold return on investment,” (Global Commission on Adap-
tation, 2019) which have been recognized by the IPCC as a key adaptation strategy (Pörtner et al., 2022). Within 
Africa, ICPAC, FEWS NET and the Kenyan and Ethiopian Meteorological Departments provide some of the 
most sophisticated EWS. This sophistication, the long-standing climate volatility and food insecurity in the Horn, 
in addition to the many years of collective research and practical experience represented by the authors, provide 
us a vantage point from which to provide 10 recommendations related to effective EWS development and imple-
mentation in the context of climate change. These recommendations are relevant for many regions linked via 
teleconnections to Indo-Pacific SSTs:

1.  Realize that climate change is happening now and offers opportunities for prediction.
2.  Realize that climate change contributed to recent extreme SSTs and associated EHoA droughts and floods, 

and that many of these extremes were predictable.
3.  Realize that extreme SST gradients provide opportunities for forecasts.
4.  Pay attention to extremely warm SSTs, these can drive predictable droughts and floods.
5.  Be concerned about increasing aridity and declining per capita resources.
6.  Work toward integrated observation/forecast systems.
7.  Invest in building capacity. Utilize local expertise.
8.  Look for places or seasons where conditions will likely be clement. Teleconnections will produce droughts, 

but also areas with bountiful rains.
9.  Leverage agricultural adaptation resources to build resilience. Link EWS to the latest agricultural adaptation 

science.
10.  Pay attention to barriers to climate information use, and learn from them.

Trust, urgency, and accuracy can enable action, helping overcome barriers associated with funding, uncertain 
tradeoffs, and inertia. Trust and urgency involve a shared understanding of how climate change is interacting with 
natural variability to produce frequent climate extremes, now. Trust also involves developing (and investing in) 
co-developed participatory advisory services: localized, culturally appropriate flows of information. Accuracy 
arises when we carefully combine domain-specific insights with the best-available information. For example, 
satellite observations and numerical model predictions are tremendous sources of information, but transforming 
this information into accurate rainfall estimates (Funk et al., 2015b) or forecasts (Figures 2 and 3b) demands 

https://era.ccafs.cgiar.org/
http://adaptationatlas.cgiar.org/riskmap
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local expertise, capacity building, and tailored communication systems (cf. Table 1). Predictions of exception-
ally warm west Pacific SSTs (Figure 2b) help anticipate the influence of climate change. While still evolving, 
inter-disciplinary collaboration is leading to first-in-kind long-lead alerts (ICPAC et  al.,  2022a, 2022b). But 
the development of effective EWS in developing countries will require large investments in human capacity. 
“Loading dock” approaches to climate services can fail to provide locally appropriate advisory services (Born 
et  al., 2021) just as “raw” climate model forecasts may miss important teleconnections and opportunities for 
prediction, such as those shown in Figure 2. Especially for MAM, long-lead drought outlooks would be substan-
tially less skillful if they were just based on climate model rainfall forecasts (Shukla et al., 2016) or equatorial 
east Pacific SST predictions. Skill matters. For OND La Niña-related droughts, which the models capture well, 
effective actions based early alerts can build resilience in the face of sequential droughts.

Urgency arises from the long-term implications of extreme SST gradients (Figure 3a), warming air temperatures, 
population growth, income gaps, and other socioeconomic and political stressors. Strong negative WPG/WVG 
gradients have become common (Figure  1e). Climate change contributed to extreme gradients in 2016/2017 
and 2020/2022 (Figure 1f). These gradients helped produce an unprecedented five-season drought in the Horn. 
Given that the serial correlation of EHoA MAM and OND rains is very close to zero, the chance of a five-season 
drought sequence happening randomly is extremely low (0.333^5 ≈ 0.4%).

The frequency of strong gradient events is expected to increase dramatically (by >50%) by mid-century 
(Figure 3a), which will likely increase in the frequency of poor EHoA rainy seasons. More frequent dry seasons 
may also be accompanied by more frequent El Niños and positive IOD events and extreme precipitation (Cai 
et al., 2014b, 2018, 2022). Increasing air temperatures contribute to both droughts and floods. Under dry condi-
tions, warmer air draws more moisture from plants. Under wet conditions, warmer air holds more water vapor, 
leading to more extreme precipitation. Such influences contribute to “wet-getting-wetter” and “dry-getting-drier” 
tendencies in the Horn (Haile et al., 2020). Observed EHoA crop water requirements are also trending upward 
during dry seasons, and these influences appear preferentially in hot-arid lowland areas (Funk, Turner, et al., 2021; 
Funk, Way-Henthorne, et al., 2021). Importantly, the spatial signature of these impacts largely aligns with the 
footprint of WPG/WVG-related drought tendencies.

Finally, increases in population and water scarcity are also likely to expand insecurity. UN projections suggest 
that between 2022 and 2050, the population of Ethiopia, Kenya, and Somalia, will increase by 70%. Holding 
other factors constant, population-driven per capita water availability projections for 2050 indicate the potential 
for severe water stress and scarcity (Funk & Shukla, 2020). Population-driven projections of Kenyan per capita 
maize production also indicate 40% reductions by 2050 (Funk, Way-Henthorne, et al., 2021). Planning for more 
frequent and severe extremes by enhancing EWS and advisory services can help mitigate these climate shocks.

The long-term implications of these compound stresses are very concerning, especially for the hot, dry EHoA 
lowlands. Yet, there is also hope that crop productivity can be increased in humid areas. Many areas of Ethiopia, 
and substantial portions of Kenya, are climatically secure. Some of these areas (most of Ethiopia) tend to expe-
rience rainfall increases during La Niña-like seasons. Closing yield gaps in humid regions would create wealth 
and lower food prices, and there is growing evidence that climate-enhanced advisories can contribute (Table 1). 
But achieving this promise will require much greater investments in African experts, experts who can improve 
and interpret forecasts, link to agricultural ministries, extension programs, and agricultural research centers, and, 
ultimately, farmers and pastoralists.

Data Availability Statement
The time series data supporting the primary results of this study are available via Dryad. Funk (2022), Data—
Tailored forecasts can predict extreme climate informing proactive interventions in East Africa, Dryad, Dataset, 
https://doi.org/10.25349/D9MC8Z. Code Availability: The bulk of the analysis presented in this paper are based 
on simple time-series manipulations, and are presented in the excel file in the Dryad link above. The most sali-
ent results can be recreated without coding, using the time series provided in the Dryad repository. Time-series 
extraction and the simple SST composite plots shown in Figures 2c and 2d were done using Interactive Data 
Language version 8.7, and the related code is contained with the Dryad Repository. Zip files in that directory 
also contain NOAA extended reconstruction version 5 gridded SST data, NMME SST forecasts from May and 
September, and regionally averaged CMIP6 SSP245 SST time-series.

https://doi.org/10.25349/D9MC8Z
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